Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1
نویسندگان
چکیده
Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1-LGN-NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry.
منابع مشابه
A role for a novel centrosome cycle in asymmetric cell division
Tissue stem cells play a key role in tissue maintenance. Drosophila melanogaster central brain neuroblasts are excellent models for stem cell asymmetric division. Earlier work showed that their mitotic spindle orientation is established before spindle formation. We investigated the mechanism by which this occurs, revealing a novel centrosome cycle. In interphase, the two centrioles separate, bu...
متن کاملMsd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation
Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator γ-tubulin complex. hMsd1/SSX2IP depletion leads to diso...
متن کاملMorphological adjustment of senescent cells by modulating caveolin-1 status.
Morphological change is one of the cardinal features of the senescent phenotype; for example, senescent human diploid cells have a flat large shape. However, the mechanisms underlying such senescence-related morphological alterations have not been well studied. To investigate this situation, we characterized the senescence-dependent changes of cellular structural determinants in terms of their ...
متن کاملStructure and duplication of the centrosome.
The centrosome has evolved in multicellular organisms from the basal body/axoneme of the unicellular ancestor (Azimzadeh and Bornens, 2004). It plays a major role in organizing the microtubule cytoskeleton in animal cells. During interphase, the centrosome organizes an astral array of microtubules (MTs) that participate in fundamental cellular functions such as intracellular trafficking, cell m...
متن کاملInterphase Microtubules Determine the Initial Alignment of the Mitotic Spindle
In the fission yeast Schizosaccharomyces pombe, interphase microtubules (MTs) position the nucleus [1, 2], which in turn positions the cell-division plane [1, 3]. It is unclear how the spindle orients, with respect to the predetermined division plane, to ensure that the chromosomes are segregated across this plane. It has been proposed that, during prometaphase, the astral MT interaction with t...
متن کامل